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A Discrete Multicomponent Fuels Model for GDI Engine Simulations

D�J� Torres�� P�J� O�Rourke� A�A� Amsden

Theoretical Division� Los Alamos National Laboratory

Los Alamos� NM ����� USA

Abstract

We derive equations for multicomponent fuel evaporation� solve the nonlinear equations using
Broyden�s method� and implement the model into KIVA��V� A numerical simulation is
performed comparing single and multicomponent fuel evaporation�

Introduction

Until recently� most models of fuel sprays
and wall �lms have used a single component
fuel ��	� However� 
ame propagation rate�
spray penetration� and fuel chemistry are all
functions of fuel composition and vaporiza�
tion rates ��	� Implementing a multicompo�
nent fuel model would improve the accuracy
in predicting these facets of fuel injection and
thus overall engine performance�

There exist two di�erent means of model�
ing multicomponent fuels� In the �rst� the
fuel is modeled as discrete fuel species� the
characteristics of which are determined from
fuel libraries� In the second model type� the
fuel is treated as a continuous species� The
fuel composition is described by a probability
density function 
PDF�� and thus fuel prop�
erties are deduced from this PDF ��	 based
on molecular weight� boiling point� or carbon
number ��	� While fuels can be composed of
hundreds of hydrocarbons� most fuels can be
accurately modeled with a few components
��	� For this reason� we have chosen to de�
velop a discrete multicomponent fuel model�

Most discrete fuel studies which assume
a �nite non�zero mass di�usion rate are
performed with binary mixtures� 
��	� ��	�
��	�� and study the e�ects of Lewis number�
Reynolds number� droplet composition� and
fuel volatility di�erences� Zeng and Lee�s ��	�
���	 discrete model of multicomponent fuel
has considered four or more fuel components�
They use a transport equation to evolve the
di�erence between surface and average val�
ues for temperature as well as species mass
fraction� E�ective thermal and mass di�u�
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sivities are used to account for internal cir�
culation within the droplet� Raoult�s law or
the Redlich�Kwong equation of state 
at high
pressures� are used to determine thermody�
namical phase equilibrium�

The di�erences between our model and
other discrete models lie in how the Nusselt
and Sherwood numbers in both the liquid and
gas phases are modeled� the fact that we do
not decouple the temperature equations from
the species mass fractions equations by ne�
glecting the smaller contributions from the
liquid enthalpy di�usion terms and convective
term and our use of a temperature dependent
pure fuel density� The use of a Broyden iter�
ative scheme allows us to implicitly solve the
nonlinear equations that arise when modeling
a fuel with many components�

Equations

We begin with the general conservation
equations with Fickian di�usion� neglecting
external forces� thermal radiation� Soret and
Dufour e�ects� and viscous terms� and derive
for a spherically symmetric droplet� a trans�
port equation for the mass of fuel species i�
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a transport equation for the total internal
energy within the droplet�
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and an interface condition on temperature�X
i
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One can also show
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In the equations above� �Yl�i is the mean
species mass fraction�

�Yl�i � Mi�M� M �
X
i
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and Shl�i and Shg�i are Sherwood numbers
within the liquid and gas phase� de�ned to
be�
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Similarly the liquid and gas Nusselt numbers�
Nul and Nug are de�ned to be
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In addition� one has the following relations
between Ts and Ils and Il and Td�

Ils �
X
i

Yls�iIl�i
Ts�� Il �
X
i

MiIl�i
Td��


���
Here Il�i is the speci�c internal energy of the
pure liquid fuel species i�
One can express Ygs�i in terms of Yls�i us�

ing Raoult�s law for relatively low pressures�
Raoult�s law states�

pgs�i � Xls�ip
o
vap�i � 
���

where pgs�i is the partial pressure of species i
in the gas phase at the droplet surface� and
povap�i is the equilibrium vapor pressure for a
pure species i� The quantities Xls�i and Ygs�i
are determined from the relationship between
mole and mass fractions�
Using
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one can derive an equation for the liquid ve�
locity at the droplet surface ��	�
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We use the following form for the Nusselt
number in the gas
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where Bd is the fuel Spalding transfer num�
ber�
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Reg is the Reynolds number and Prg is the
gas Prandtl number� We also use the follow�
ing form for the Sherwood number in the gas
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where Scg�i is the Schmidt number�
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We obtain a transport equation for the ac�
tual thermal boundary layer thickness � �T by
assuming �T relaxes to �Teq with a relaxation
time� 	eq � following Zeng and Lee ���	�

d�T

dt
�
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and c� is a constant of O
���
We derive a preliminary expression for the

equilibrium thermal boundary layer thick�
ness� ��Teq � of a rapidly vaporizing drop by set�
ting the di�usion wave velocity equal to the
surface regression rate
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where c� is a constant of O
��� In addition�
we enforce the restriction �Teq �
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on the
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Once one has solved for the thermal boundary
layer thickness� �T � the liquid Nusselt number
is then set equal to

Nul �
�rs
�T

� 
���

We expect that for newly formed droplets
from breakup� �T should be small� and so we
initialize �T to be �T � ����rs�
We derive the liquid Sherwood number by

realizing that Lel �
�l
Dl

� �T

�M
where �M is

the concentration boundary layer thickness�
Typically Lel � O
��� � ����� Thus �M will
be smaller than �T and there will exist a steep
gradient in species mass fraction near the sur�
face of the droplet� Accordingly by 
��� we set

Shl�i � NulLel� 
���

We also typically set Dl�i to be equal for all
species� Setting the product Shl�iDl�i to be
the same for all species� allows one to enforce
both constraints in 
���

To summarize� 
�� provides Ns transport
equations for the Ns masses Mi� 
�� provides
Ns equations for the Ns unknown mass frac�
tions� Yls�i� 
�� provides a transport equation
for Il� and 
�� provides an equation for Ts�
Equation 
�� determines the surface regres�
sion rate R� One also requires 
��� and 
����

��� which de�ne �Yl�i� Ils � Td� Ygs�i� �ls � vls �
Nug� Shg� Nul� and Shl�

Numerical solution

To solve the nonlinear set of equations

���
��� we use Broyden�s method� Broy�
den�s method is a method akin to the secant
method� where an approximate Jacobian ma�
trix 
J� or derivative is used to update one�s
solution ���	�

One wishes to �nd a solution to F
x� � ��
where F is a set of nonlinear functions� Given
an initial guess xo� set Ao � J
xo� � �Fi

�xj
� Do

for k � ���� ��� �

Solve Aksk � �F
xk� for sk�

Set xk�� � xk � sk�

Set yk � F
xk����F
xk��

Update Ak�� � Ak � �yk�Aksk��sk�T

�sk�T sk � The

�rst Jacobian� J
xo�� is not found analyt�
ically but approximated with �nite di�er�
ences�

Results

We simulate gasoline with a six compo�
nent blend 
synfuel� composed of ����� cy�
clohexane 
b�p� ��oC�� ����� iso�octane 
b�p�
��oC�� ����� toluene 
b�p� ���oC�� �����
iso�pentane 
b�p� ��oC� � ����� ethylben�
zene 
b�p� ���oC�� and ���� n�decane 
b�p�
�����oC� ��	 by implementing these multi�
component spray equations into KIVA��V� A
total of ���� milligrams of fuel is injected us�
ing ���� spray parcels for ��� milliseconds
into an ambient pressure of � bar� Mass di�u�

sion coe�cients are set to �� ���� cm�

s
� The

axisymmetric calculation is performed in a
������ cm radial by ��� cm vertical domain
with �� radial and �� vertical computational
cells� We compare the time evolution of the
total liquid fuel for synfuel with the standard
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Figure �� Evolution of total fuel for multi�
component fuel blend and standard �KIVA
gasoline at ��oC

�KIVA gasoline in Fig� � for fuel injected at
��oC� We also display the time evolution of
species mass fractions for synfuel for an injec�
tion fuel temperature of ��oC in Fig� �� We
see that synfuel evaporates more slowly than
KIVA gasoline in Fig� � at least after injec�
tion ceases� In Fig� �� the mass fraction of
the most volatile component 
iso�pentane� di�
minishes leaving the less volatile components
behind� The mass fraction of cyclohexane

which is the next most volatile component
after iso�pentane� initially increases and then
decreases gradually during the course of the
calculation�

Nomenclature

Bd Spalding transfer number
D Mass di�usion coe�cient
h Speci�c enthalpy
I Speci�c internal energy
I Total internal energy within droplet
L Latent heat of vaporization
Le Lewis number
Mi Mass of species i within droplet
�Mi

dMi

dt

Nu Nusselt number
Ns Number of species
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Figure �� Evolution of species mass fractions
for ��oC injection

p Pressure
rs Droplet radius

R drs
dt

Re Reynolds number
Sc Schmidt number
Sh Sherwood number
t Time
T Temperature
v Velocity
vs Interfacial velocity
X Mole fraction
Y Mass fraction
�Yi Mean species mass fraction
� Density
� Thermal conductivity
�T Thermal boundary layer thickness
�M Concentration boundary layer thickness

 Thermal di�usivity
� Viscosity

Subscripts

i Species i
l Liquid phase
g Gas phase
ls Liquid phase at droplet surface
gs Gas phase at droplet surface
� Gas phase in droplet cell
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